INTEGRATION OF NEW RECORDING DEVICES INTO ANIMAL RECORDING AND ICAR STRUCTURES

Steven J. Sievert

Technical Director, National DHIA/Quality Certification Services, Madison, WI USA

Chair, ICAR Subcommittee for Recording and Sampling Devices

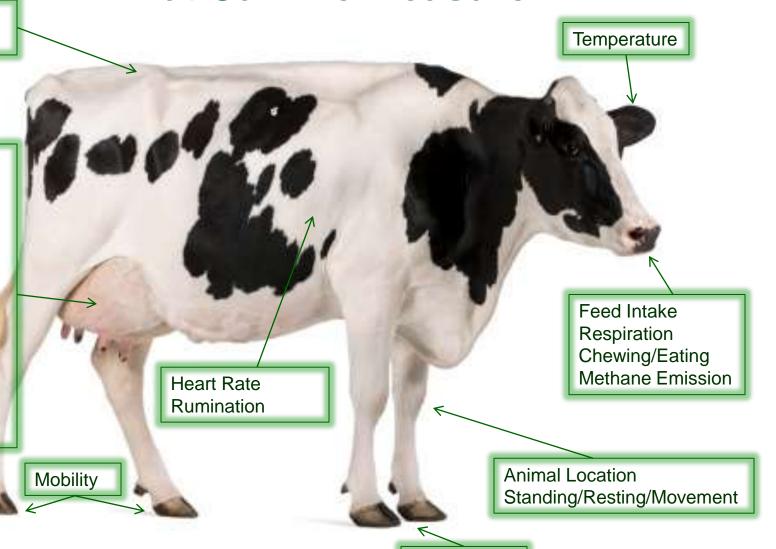
in Modern Herd Recording

Are We Listening?

Livestock are ideal candidates for repeated measures – What can I tell you?

Producers are saying I made the investment - How are you going to use my farm/herd data?

Recording organizations are looking for guidance – What do we do?

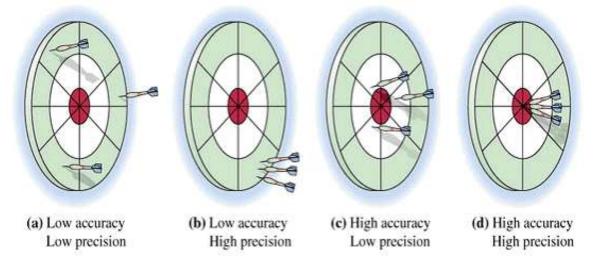


What Can We Measure?

Body Condition Body Weight

Milk Yield
Milk Composition
Milking Speed
Milk Flow Rate
Estrus/Pregnancy
Mastitis
Pathogens
MUN
Ketosis
VFAs
Johne's
BVD

BLV



Hoof Health

Accuracy & Precision

- •Cannot simply assume that you can be less accurate in measurement just because you have more data observations
- Improve accuracy by calibration & design
- Improve precision by quality control
- •What are the accuracy & precision compared to the 'gold standard' for the industry?
- Cannot simply assume that accuracy & precision are acceptable when compared to other measures on the farm

Sensor Devices Task Force

Kees de Koning, Netherlands

Uffe Lauritsen, Denmark

Karl Zottl, Austria

Harrie van den Bijgaart, Netherlands

Friedrich Reinhardt, Germany

Clement Allain, France

Brian Wickham, Ireland/NZ

Jeroen van den Ban, Lely

Henrik Idensjö, DeLaval

Goals of the Sensor Devices Task Force

Classification, Qualification & Potential ICAR Approval of Sensor Devices

Dissemination of Recording Guidelines using Data from Sensors

Development & Distribution of Best Practices for Data Collection from Sensors

Producers, breeding companies, herd books, recording organizations, and manufacturers are looking to ICAR to establish research-based standards and guidelines for the usability of sensor device data in their programs.

Review & Classification of Sensors

What does the sensor measure?

What is the accuracy and precision of the measurement?

ICAR and its members cannot determine suitability of data until we know and understand the measurement

How is the device calibrated and maintained?

What are We Measuring?

Multiple
Indicators of
Mastitis or
Milk Quality

- Automated CMT/WMT
- Electrical conductivity
- L-lactate dehydrogenase
- N-acetyl-beta-D-glucosaminidase
- ATP luminescence
- Thermal imaging
- Visible, NIR, MIR spectroscopy

Milk quality measures are affected by sampling time, temperature, milk viscosity, calibration

SCC value

800,000 - 2,000,000

400,000 - 800,000

200,000 - 400,000

> 2,000,000

< 200,000

Data Definitions and Validation Questions

Data Definitions

 Define the recording period for a parameter

[7 consecutive days]
[10 consecutive milkings]
[fraction of the milking]

- Precision of recording
 [4.2% vs. 4.22% vs. 4.222%]
- Other data to be captured

[animal ID]
[date/time stamp]

Data Validation

- Handling of missing data points
- Decision rules for handling and/or exclusion of outliers
- Distribution of errors
- Range of accurate measurement
- Evaluation of algorithm
- Data smoothing

Sensor Device Approval & Routine Procedures

ICAR Guidelines for Device Approval

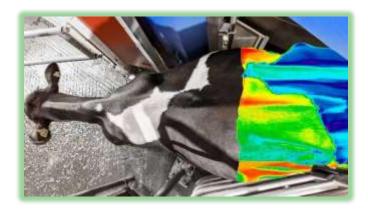
- Development of ICAR guidelines for sensors
- Testing & validation protocols
- Co-innovation & cooperation with manufacturers

Routine
Procedures
& Best
Practices

- Installation protocols
- Routine calibration and monitoring procedures
- Development of best practices for recording organizations

Animal ID is Key

- ■The 'official ID' of an animal most likely will not be the same as ID associated with sensor measures
- Animals may have multiple IDs over their lifetime
- Animals may have multiple IDs on their body at once
- Databases will need to have protocols for ID cross-referencing and validation
- Recording Organizations will need a protocol for on-farm validation of ID system and for data transfer



Potential New Streams of Data

Body Condition Scores

- Device approval(s)
- Standard scale for BCS
- Standards for data capture and transfer from local computer to national databases

Milking Speed, Motility, Activity & Others


- Can we use this data?
- How do we use this data?
- Define the measure(s)
- Data on local computers used for daily management decisions
- Data transfer to national databases for research, benchmarking, genetic evaluations

Managing Multiple Streams of the Same Data

- Producer may contribute information for the same parameter from different measuring devices
- Need to capture not only data point(s) but also source of the data

How will we value each data point?
How will we value the whole record?
What information will we deliver?

How Will We Value Sensor Data?

The Same
Parameter May
Be Estimated by
Different
Methods with
Different Data
Values Assigned
for Each Method

Equivalency to Traditional Test Day Data

 Define parameters that approximate the accuracy and precision of traditional milk recording parameters like milk yield or composition

Separate Classes of Data

 Currently A & B Test Types – will we have a test type or class for specific sensor data

Weighting of Data

 Data collection rating system that puts relative weight on data type, collection interval, and parameters measured

Use Validated Data Directly

 New parameters may deliver data with acceptable accuracy and precision and the data is used with minimal editing

Exclusion of Certain Data

•Results from specific parameters may be deemed to be unsuitable for herd recording programs at the present time

Timeline & Delivery

Sensor Devices Task Force

May 2016

• ICAR Board approved creation of Sensor Devices Task Force (SD-TF)

September 2016

- Meeting of SD-TF in Amsterdam
- Plan of action approved
- Review of devices implemented

Winter 2016 -Spring 2017

- Conference calls/web-based meetings
- Identification of additional expertise
- Development of initial guidelines/standards

June 2017

- Presentation ICAR 2017 in Edinburgh
- Initial concepts on best practices for review

Mid-Late 2017

- Work continues on guidelines for sensor devices
- Collaboration with manufacturers and database administrators
- Dissemination of proposed guidelines to members and manufacturers

February 2018 Proposed revisions to guidelines presented to the General Assembly at ICAR 2018 in Auckland for approval

Summer 2018 Validation of uptake and solicitation of feedback by member survey

Livestock are ideal candidates for repeated measures – What can I tell you?

Producers are saying I made the investment - How are you going to use my farm/herd data?

Recording organizations are looking for guidance – What do we do?

